
M. David Johnson
http://www.bds-soft.com
info@bds-soft.com

Benchmarking CF83 Forth

by M. David Johnson

2019/04/26

Benchmarking CF83 Forth -- 2019/04/26 -- Page 2 of 85

Abstract

CF83 Forth was compared, for speed of operation, to Basic, Assembly Language, and four other
Forths for the Radio Shack Color Computer.

With the exception of printing, CF83 Forth was found to be significantly faster than Basic,
significantly slower than Assembly Language, and reasonably comparable to the four other
Forths.

In a printing-intensive benchmark, CF83 Forth was found to be much slower than any of its six
competitors in this investigation.

Special Thanks to Stephen M. Periera for his guidance through the labyrinths of Talbot
ColorForth.

Benchmarking CF83 Forth -- 2019/04/26 -- Page 3 of 85

Table of Contents

Abstract .. 2

Introduction .. 4

General Methodology 6

Results ... 7

Conclusions and Future Work 9

Appendix A: Equipment 11

Appendix B: Languages 12

Appendix C: Calibration and the CoCo Timer 22

Appendix D: Brute Force Primes Benchmark 24

Appendix E: Sieve of Eratosthenes Benchmark 41

Appendix F: Add Loops Benchmark 60

Appendix G: Print Loops Benchmark 72

Appendix H: New BDS Software License 84

Appendix I: References 85

Benchmarking CF83 Forth -- 2019/04/26 -- Page 4 of 85

Introduction

Speed is not the only factor which is important for selecting a programming language. Other
factors include:

 Availability
 Cost

Ease of Use
Learning Curve

 Features Collection
 Suitability to a Specific Programming Task
 User/Language Interface
 Language/Machine Interface
 Extensibility
 etc.

However, speed is certainly one of the factors that go into making the selection, and it is
therefore an important factor to measure.

In this paper, we investigate and compare the relative speeds of the following languages:

Basic
Assembly Language
CF83 Forth
Armadillo ColorForth 2.0
pd10 Superforth
Talbot ColorForth 1.1
eForth

all for the Radio Shack Color Computer.

We make the comparisons on the basis of four Benchmarks:

 Brute Force Primes Benchmark
 Sieve of Eratosthenes Primes Benchmark
 Add Loops Benchmark
 Print Loops Benchmark

When I first completed CF83 Forth and its extensions back in 1991, The Rainbow Magazine had
just died. Figuring that the CoCo would die with it (little did I know), I put CF83 in a drawer and
mostly forgot about it. At the time, I never tested it in comparison to other languages available
for the CoCo.

Benchmarking CF83 Forth -- 2019/04/26 -- Page 5 of 85

Now that I’ve discovered that the CoCo still lives, and have put CF83 back “out there”, it
seemed like an appropriate time to explore how CF83 stacks up against some of the other players
in the CoCo languages game.

I hope the current investigation will help you in assessing whether or not CF83 would be your
choice for developing any of your own applications.

Benchmarking CF83 Forth -- 2019/04/26 -- Page 6 of 85

General Methodology

All benchmark tests were run on the Vcc Emulator as described in Appendix A. Before
beginning any of the benchmark runs proper, the stopwatch was used to calibrate the CoCo
Timer, as described in Appendix C, i.e. to determine how many ticks per second were actually
occurring in the Vcc Emulator.

Each of the languages, even the Forths, are different from each other and have their own
idiosyncrasies. For each of the four benchmarks, the code had to be independently developed for
each language. This means that the code is not identical in any two given cases.

However, the sections of the code which were individualized in this manner were kept outside of
the timed sequences. In all cases, the specialized setups were accomplished prior to the start of
the timing, and the reporting mechanisms were delayed until after the end of the timing.

In each benchmark, with the exception of eForth, the methodology followed was:

 Initial setup
 Clear the CoCo Timer to Zero
 Perform the benchmark
 Get the CoCo Timer Number of ticks expired
 Report the results.

Because eForth does not implement nor provide any access to the CoCo Timer, its methodology
was similar, although not identical:

 Initial setup
 Sound the bell User starts the stopwatch
 Perform the benchmark
 Sound the bell User stops the stopwatch
 Report the results.

In all cases, for each benchmark for each language (thus 4 x 7 = 28 cases in all), each given case
was run ten times (thus there were a total of 280 runs) to smooth out any anomalies encountered.

(Calculator.net) was then used to obtain the mean and standard deviation for each case. Finally,
except for the eForth runs, which were already reporting in terms of seconds of elapsed time, the
results in number of ticks were converted to number of seconds elapsed.

Both the Brute Force Primes and the Sieve of Eratosthenes Primes Benchmarks’ results were
verified for correct selection of primes against Professor Chris Caldwell’s list, “The First 10,000
Primes”, located at The University of Tennessee at Martin:

https://primes.utm.edu/lists/small/10000.txt

https://primes.utm.edu/lists/small/10000.txt

Benchmarking CF83 Forth -- 2019/04/26 -- Page 7 of 85

Results

In each case, the Brute Force Primes Benchmark calculated all the primes up to 290 by the
simple mechanism of dividing each number N (from N = 3 to 290) by each lesser number N1
(from N1 = 2 to N1 = N-1). If the value of any of the divisions of a given N by a given N1 was a
whole number (i.e. if the division was exact) then that N is not prime. See Appendix D.

Assembly Language 5.80 seconds
eForth 50.35 seconds
pd10 SuperForth 98.65 seconds
CF83 Forth 113.85 seconds
Talbot ColorForth 1.1 130.18 seconds
Armadillo ColorForth 2.0 161.18 seconds
Basic 1056.34 seconds

In each case, the Sieve of Eratosthenes Primes Benchmark calculated all the primes up to 4,364
by the well-known Sieve of Eratosthenes. See Appendix E.

Assembly Language 0.77 seconds
eForth 2.87 seconds
Talbot ColorForth 1.1 3.28 seconds
Armadillo ColorForth 2.0 3.97 seconds
pd10 SuperForth 4.50 seconds
CF83 Forth 4.70 seconds
Basic 126.34 seconds

In each case, the Add Loops Benchmark added 5 to 7 and stored the result in the variable AVAR
165,000 times. See Appendix F.

Assembly Language 5.45 seconds
eForth 34.62 seconds
Talbot ColorForth 1.1 47.52 seconds
Armadillo ColorForth 2.0 42.66 seconds
CF83 Forth 62.61 seconds
pd10 SuperForth 69.62 seconds
Basic 1088.46 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 8 of 85

In each case, the Print Loops Benchmark printed the string:

“PRINTING LOOPS BENCHMARK ”

2,000 TIMES. See Appendix G.

Assembly Language 16.31 seconds
pd10 SuperForth 25.21 seconds
Basic 34.66 seconds
Armadillo ColorForth 2.0 42.88 seconds
Talbot ColorForth 1.1 60.22 seconds
eForth 168.23 seconds
CF83 Forth 1006.55 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 9 of 85

Conclusions and Future Work

In all of the Benchmarks, except for the Print Loops Benchmark, all five Forths were
significantly faster than Basic, significantly slower than Assembly Language, and reasonably
comparable to each other, except that eForth was consistently faster than the other Forths in all
three of those benchmarks.

In the Print Loops Benchmark, all of the Forths except pd10 SuperForth were slower than Basic,
with CF83 even being six times slower than its nearest competitor, eForth.

The slowness of eForth and CF83 Forth can be attributed to their using their own (PMODE 4)
graphics screens for text, and thus having to draw their text characters rather than using the
CoCo’s native text screen.

CF83 Forth should thus probably not be considered for “printing-intensive” applications.

CF83’s dismal printing performance could probably be significantly improved (when necessary
for a given application) by introducing new, alternate, printing words loosely based on Extended
Color Basic’s PUT mechanism (cf. Zydhek, p. B33, at memory location $9758).

Some preliminary tests have already indicated that a significant improvement in speed can be
reasonably expected from such.

Alternatively, CF83 could be internally revised to use such a PUT mechanism universally. That
would, however, be a seriously more extensive project.

Finally, in addition to such a change, for even more speed (with everything – not just printing)
CF83 could also be completely rewritten to utilize a subroutine-threaded interpreter model
instead of its current indirect threaded interpreter model. The time overhead of jumping back to
the inner interpreter at the end of every colon word definition could thus be completely avoided.

However, such an increase in speed comes with a price: greater system memory use and,
therefore, less user-dictionary space.

(Warren, p.76) tells us that the MC6809 LBSR ($17) instruction requires 3 bytes, and (p. 100)
the RTS ($3B) instruction requires 1 byte.

The current indirect-threaded interpreter code layout for a CF83 colon word appears as follows:

Name Field = length varies
Link Fields = 4 bytes
Code Field = $0007 for colon definitions = 2 bytes.
Word 1 Code Field Address = 2 bytes
Word 2 Code Field Address = 2 bytes
.

Benchmarking CF83 Forth -- 2019/04/26 -- Page 10 of 85

.

.
Word N Code Field Address = 2 bytes
Semi = $000D = 2 bytes

So that the total length of the colon word, without the Name Field or Link Fields, is:

 2 + 2 + 2N bytes

But, for a subroutine-threaded Forth, the code layout would be:

Name Field = length varies
Link Fields = 4 bytes
Code Field = Not used = 0 bytes.
LBSR Word 1 = 3 bytes
LBSR Word 2 = 3 bytes
.
.
.
LBSR Word N = 3 bytes
RTS = 1 byte

So that the total length of the subroutine-threaded colon word, without the Name Field or Link
Fields, is:

 0 + 1 + 3N bytes

Setting 2 + 2 + 2N = 0 + 1 + 3N 4 + 2N = 1 + 3N N = 3

Which means that any colon word definition comprising more than three words will take up
more memory space in a subroutine-threaded environment than it currently does in the indirect-
threaded environment.

And, we can also note that as the number of words in a colon definition increases, the definition
length of the subroutine-threaded definition will approach 1.5 times the definition length of the
indirect-threaded definition.

With only 64K to work with, this might easily be deemed prohibitive.

Benchmarking CF83 Forth -- 2019/04/26 -- Page 11 of 85

Appendix A -- Equipment

Our test suite consists simply of the Vcc Color Computer Emulator and a stopwatch.

Vcc 2.0.1 is running under Windows 7 Professional (64-bit) SP1 on a Hewlett-Packard p6774y
with an AMD Phenom™ II X4 840T 2.90 GHz processor and 16.0 GB of RAM.

The stopwatch is a Cronus Survivor Series, Model C601-11.

Benchmarking CF83 Forth -- 2019/04/26 -- Page 12 of 85

Appendix B -- Languages

Seven different languages are compared in this investigation:

 Basic
 Assembly Language
 CF83 Forth
 Armadillo ColorForth 2.0
 pd10 SuperForth
 Talbot ColorForth 1.1
 eForth

Basic

“Basic” here simply means Radio Shack’s standard Disk Extended Color Basic 2.1 .

Assembly Language

This is standard 6809 Assembly Language as embodied in Radio Shack Disk EDTASM+
01.00.00 1983, running under TRSDOS 01.07.00 11/82 .

CF83 Forth

This is the original CF83 Forth, Copyright 1991 by M. David Johnson, BDS Software,
Glenview, IL, as contained on the base CF83-0 disk. It was used without any extensions, except
that the CF83-3 Block Editor disk was used for development of the program blocks. Only the
CF83-0 disk software and the program blocks themselves were used in the test runs of this
investigation.

The CF83 Forth system is available (for free) directly from BDS Software at:

http://www.bds-soft.com/coco.html

It’s also available on the (CoCo Archive), where it can be downloaded from:

http://www.colorcomputerarchive.com/coco/Disks/Programming/ under the title:

CF83 Forth (BDS Software).zip

CF83 Forth uses its own (PMODE 4) text screen, which is 64 characters wide by 24 characters
high.

http://www.bds-soft.com/coco.html
http://www.colorcomputerarchive.com/coco/Disks/Programming/

Benchmarking CF83 Forth -- 2019/04/26 -- Page 13 of 85

Note that, when switching focus (e.g. when removing one diskette and inserting another), you
may have to hit your next selected key twice in order to get the intended result.

Also note that, when removing a diskette, it’s usually a good idea to execute “flush” first.

Armadillo ColorForth 2.0

Armadillo’s ColorForth 2.0 is available on the (CoCo Archive). It was downloaded from:

http://www.colorcomputerarchive.com/coco/Disks/Programming/ under the title:

Color Forth 2.0 (Armadillo Int'l Software).zip

Armadillo ColorForth uses the standard CoCo text screen; 32 characters wide by 16 lines high.

The zip file expands to a single Clrforth.dsk file. That disk’s directory shows two files:

 SCREENS FTH 3 A 60
 COLORFTH BIN 2 B 4

However, SCREENS.FTH appears to be an invalid directory entry. Although one might be
tempted to guess that this file would provide the screens code (and perhaps some instructions)
for Armadillo’s ColorForth, nothing labeled such seems to actually exist on the disk. In the areas
where such a file might reside, all the bytes are uniformly $FF.

As of this writing, I have been unable to discover this file or any other screens listing or
instruction manual for Armadillo ColorForth anywhere else.

The COLORFTH.BIN file, however, is valid and LOADM and EXEC function as expected with it.
This results in “COLORFORTH VERSION 2.0 (C) 1983 ARMADILLO INT’L SOFTWARE”
being displayed at the top of the standard CoCo 32x16 screen.

I could discover no block editor mechanism for Armadillo ColorForth. However, blocks
prepared with the CF83 Block Editor work just fine in Armadillo.

When the blocks load, they result in some messages which are not clear because of the lack of a
manual. For example, from the Armadillo Benchmarks Disk, 1 LOAD produces the message
“LIMIT MSG #4 OK”. I suspect it may indicate that LIMIT is a duplication of an existing
word, but I can’t be sure. The blocks work properly anyway.

If it gives the message “? MSG #0”, however, that clearly means that the word preceding the
message is not recognized by the system, i.e. it has not been defined.

Armadillo is a fig-FORTH. As such, variables must be defined with a leading zero, i.e.:

http://www.colorcomputerarchive.com/coco/Disks/Programming/

Benchmarking CF83 Forth -- 2019/04/26 -- Page 14 of 85

 0 VARIABLE AVAR

rather than the Forth-83 style:

 VARIABLE AVAR

When preparing blocks with the CF83 Block Editor, it’s important to remember that Armadillo
ColorForth likes ALL CAPS.

Note that “J” (the Forth-83 outer loop counter) is not required by fig-FORTH and is not included
in Armadillo ColorForth. Use something like 0 VARIABLE TEMP to store an outer loop
counter as needed.

U. doesn’t work in Armadillo. For these test runs I just used . instead.

0> doesn’t work. I just used 0 > instead.

An interesting situation occurred with 1- which doesn’t work in Armadillo ColorForth. In these
tests, 1 – didn’t work properly either. I also tried using 65535 + instead, but that wouldn’t go
either. I finally predefined:

 : 1- 1 - ;

and that worked properly.

NOT doesn’t work. Predefine : NOT IF 0 ELSE 65535 THEN ; instead.

Note also that Armadillo provides THEN as a clone of the ENDIF which is fig_FORTH standard.

And finally, note that : TEST 10 0 DO I . LOOP ; works as expected in Armadillo,
sequencing through loops 0 through 9 and stopping before 10.

pd10 SuperForth

pd10 SuperForth is available on the (CoCo Archive). It was downloaded from:

http://www.colorcomputerarchive.com/coco/Disks/Programming/ under the title:

Forth.zip

pd10 SuperForth uses the standard CoCo text screen; 32 characters wide by 16 lines high.

The zip file expands to a single FORTH.dsk file. That disk’s directory shows thirteen files:

 MENU BAS 0 B 1

http://www.colorcomputerarchive.com/coco/Disks/Programming/

Benchmarking CF83 Forth -- 2019/04/26 -- Page 15 of 85

 FORTHMAN UL1 2 B 7
 FORTHMAN UL2 2 B 7
 FORTHMAN UL3 2 B 1
 FORTH BIN 2 B 3
 EDIT DAT 1 A 3
 FRTHDOC1 TXT 1 A 7
 FRTHDOC2 TXT 1 A 7
 FRTHDOC3 TXT 1 A 1
 FRTHDOC4 TXT 1 A 7
 32KFORTH BIN 2 B 4
 NEWFORTH BIN 2 B 3
 WE BAS 0 B 1

WE.BAS gives an OS Error when you try to run it.

MENU.BAS purports to offer you the opportunity to read either the (1) FORTH MANUAL or
the (2) FORTH DOCUMENTATION.

However, if you choose the FORTH MANUAL, the system presents not exactly gibberish, but
the absence of any space between words and the presence of extraneous characters makes the
resulting text essentially indecipherable.

If you choose the FORTH DOCUMENTATION, the system appears to present a sector-by-
sector list of a portion of the disk’s contents, beginning at Track 9, Sector 10, apparently the code
in the EDIT.DAT file. While this may be of use in tracing some of the code, it doesn’t appear to
be the intended documentation.

FORTHMAN.UL1, .UL2, and .UL3 would appear (from the “2 B 7” and “2 B 1” directory
line entries) to be machine language files, but a LOADM and EXEC just dumps you back to the
Disk ECB opening prompt and leaves the system in a (not immediately visible) corrupt state.

FRTHDOC1.TXT, FRTHDOC2.TXT, FRTHDOC3.TXT, and FRTHDOC4.TXT are valid text
files rather clearly intended to make up the Instruction Manual for pd10 SuperForth. However,
FRTHDOC4.TXT appears to just be a second copy of FRTHDOC1.TXT, instead of what I
suspect may have originally been a fourth part of the manual.

Neither FORTH.BIN nor 32KFORTH.BIN work in Vcc. But NEWFORTH.BIN does work.

pd10 SuperForth is a fig-FORTH. As such, variables must be defined with a leading zero, i.e.:

 0 VARIABLE AVAR

rather than the Forth-83 style:

 VARIABLE AVAR

Benchmarking CF83 Forth -- 2019/04/26 -- Page 16 of 85

pd10 SuperForth does not use 1024 byte blocks (a.k.a. screens) like the other Forth’s in this
investigation. Instead, it uses .DAT files. Instead of performing a block load like:

 1 LOAD

pd10 loads the files with commands like:

 LOAD BFPRIME1.DAT

with the filename NOT enclosed in quotes.

In order to edit such a file, pd10 must first load the editor with:

 LOAD EDIT (.DAT is the default extension if not specified)

The editor doesn’t like any lines longer than 32 characters.

However, SuperForth will also accept any standard ASCII file as input to the LOAD command.

pd10 SuperForth likes ALL CAPS.

Use ENDIF at the end of IF constructs; don’t try to define THEN.

Apparently, pd10 doesn’t like indented lines or stack comments.

In this investigation, it also didn’t like the REPORTRESULTS word. I used RR instead and it
worked fine.

U. works. NOT works. J works. 1- works. 0> does not work. Predefine : 0> 0 > ; instead.

Two apparent variations from the fig-FORTH standard:

 1. +LOOP does not work. pd10 uses LOOP+ instead.

 2. : TEST 10 0 DO I . LOOP ; does not work as expected in pd10; it sequences
all the way through loops 0 through 10 instead of stopping before 10. Therefore, in this
investigation I used constructs similar to : TEST 9 0 DO I . LOOP ; instead.

Talbot ColorForth

Talbot ColorForth is available on the (CoCo Archive). It was downloaded from:

http://www.colorcomputerarchive.com/coco/Disks/Programming/ under the title:

Color Forth (Talbot Microsystems).zip

http://www.colorcomputerarchive.com/coco/Disks/Programming/

Benchmarking CF83 Forth -- 2019/04/26 -- Page 17 of 85

Talbot ColorForth uses the standard CoCo text screen; 32 characters wide by 16 lines high.

The zip file expands to two .dsk files and two .txt files:

 CCF-EXEC.DSK
 CCF-SRC.DSK
 ColorForthMemMap.txt
 ColorForthUserNotes.txt

This is Talbot’s ColorForth 1.1 by TJZ (T. J. Zimmer) and RJT (R. J. Talbot), as modified by
SMP (Stephen M. Pereira) in January 2015 for Disk Extended Color Basic.

The .txt files constitute Stephen’s Instruction Manual for his modifications.

The original MicroWorks Talbot Instruction Manual is also available on the (CoCo Archive). It
was downloaded from:

http://www.colorcomputerarchive.com/coco/Documents/Manuals/Programming/ under the title:

ColorForth v1.0 (Talbot Microsystems).pdf

The CCF-EXEC.DSK directory shows four files:

 CC-FORTH BIN 2 B 3
 CCF-MISC BIN 2 B 4
 CCF-ED BIN 2 B 4
 CCF-DOLR BIN 2 B 4

These are the Machine Language files for the system and the editor, as well as the
CCF-DOLR.BIN file which is an example demonstrating different ways to combine coins to
result in an amount of $1.00 total.

The CC-FORTH.BIN file is the primary system file. It loads a subset of fig-FORTH which
allows for many common operations, and also provides the most memory space for user
programs.

To load and run the system, use the usual:

 LOADM”CC-FORTH
 EXEC

The CCF-MISC.BIN file includes the remainder of the figFORTH system as well as some
additional utility words. Its addition allows user programs to utilize all of the features of fig-
FORTH but takes up more memory space. It must also be loaded before the editor can be loaded.

http://www.colorcomputerarchive.com/coco/Documents/Manuals/Programming/

Benchmarking CF83 Forth -- 2019/04/26 -- Page 18 of 85

The CCF-ED.BIN file is the Screen (a.k.a. Block) editor.

Except for CC-FORTH.BIN, although the files have the.BIN extension, they are not directly
executable. Talbot ColorForth uses the.BIN extension for its screen files as well, a practice
which is somewhat confusing. Attempting to EXEC any of these files just returns a deceptive
“OK” result; deceptive because nothing seems to have actually executed.

These .BIN files each contain space for up to eight (8) screens. If you wish to load more than
eight screens, you need to implement the excess in other file(s).

Also rather confusing are the places where one might expect to enter a space between words, but
where a carriage return (i.e. the ENTER key) is required instead. In what follows, I will indicate
such carriage returns with the symbol <CR> .

To load screens, you must first load the file itself, using LSCR, and then load the individual
screens from that file. For example, to load the screens of the CCF-MISC.BIN file, the
commands would be:

 LSCR<CR>CCF-MISC
 4 3 2 1 LOAD LOAD LOAD LOAD<CR>

Note that there is no <CR> after CCF-MISC – this is because if the filename is exactly eight
characters long, the system performs the <CR> for you automatically.

This load gives you the full fig-FORTH system plus some utility words. Also note that
CCF-MISC.BIN MUST be loaded this way BEFORE you try to load the editor. To load the
editor at this point, execute the following:

 LSCR<CR>CCF-ED<CR>
 7 6 5 4 3 2 LOAD LOAD LOAD LOAD LOAD LOAD<cr>

Note that, here, the <CR> MUST follow the CCF-ED because it is less than eight characters
long.

Then, after all this, you can load a screens file to be edited. Put the target disk into the drive and
enter:

 LSCR<CR>FILENAME

adding a <CR> if the filename is shorter than eight characters. You can leave off the .BIN
extension: it is understood.

While loading a screen, ColorForth may report something like:

 REDEF: LIMIT

Benchmarking CF83 Forth -- 2019/04/26 -- Page 19 of 85

This just means that your LIMIT word is a redefinition of an existing word named LIMIT. This
is not a problem unless you intend to use the original LIMIT somewhere else in your code.

At the end of the block load, I’ve found that Talbot displays a red character-sized box
immediately followed by “(-? 0” which apparently means that zero errors were encountered
during the load. This is somewhat counter-intuitive since most Forths use the “?” character to
indicate that some word is not recognized in this context, and instead use “OK” to indicate no
errors..

After you have finished editing a set of eight (or fewer) screens, you must save them to a
filename using:

 SSCR<CR>FILENAME

You should note that Talbot ColorForth screens (a.k.a. blocks), instead of being the usual Forth
64 characters wide by 16 lines high, are each 32 characters wide by 32 lines long.

Once the file has been loaded, you can begin editing the screens with:

 N1 CLEAR<CR> (only if it is a new screen, or if you want to wipe it clean)
 N1 EDIT<CR>

where N1 is the screen number (from 0 to 7).

Editing is line-by-line: Talbot’s does not include a screen
editor. To edit a line, enter:

 N2 T<CR>
 P TEXT TO BE ENTERED<CR>

where N2 is the line number (from 0 to 31) and “P” means to overwrite the line with the
following text. To insert text, delete lines, or perform other line editing tasks, please refer to the
manuals.

After you are finished editing, do:

 SSCR<CR>FILENAME

To save the file which can thereafter be LSCRed and its screens LOADed as indicated above.

It has been my experience that any LSCR or SSCR error (such as using a space instead of a
<CR>, or forgetting to change the disk in the drive) will result in an SN ERROR and and the
system will stop working properly until you do a Cold Start on the CoCo, and begin all over
again from scratch.

Talbot ColorForth is a fig-FORTH. As such, variables must be defined with a leading zero, i.e.:

Benchmarking CF83 Forth -- 2019/04/26 -- Page 20 of 85

 0 VARIABLE AVAR

rather than the Forth-83 style:

 VARIABLE AVAR

While it’s true that loading CCF-MISC.BIN does indeed add the rest of the fig-FORTH words,
it also takes up a lot of memory space. Stephen Pereira’s Memory Map shows that the memory
space available for the Talbot ColorForth 1.1 User Dictionary Space only runs from $4380 to
$5800 (5,249 bytes). In particular, our Sieve of Eratosthenes Benchmark exceeds the space
available when CCF-MISC has been loaded.

So, instead of loading CCF-MISC, I just used the base CC-FORTH.BIN and predefined the
following words where necessary:

 Throughout, I used 0 > instead of the non-existant 0>

 : NOT IF 0 ELSE 65535 ENDIF ;

 : U. 0 <# #S #> TYPE SPACE ;

 : 2DUP OVER OVER ;

 : WHILE [COMPILE] IF 2+ ; IMMEDIATE

 : AGAIN 1 ?PAIRS COMPILE BRANCH BACK ; IMMEDIATE

 : REPEAT >R >R [COMPILE] AGAIN R> R> 2 –
 [COMPILE] ENDIF ; IMMEDIATE

 : +LOOP 3 ?PAIRS COMPILE (+LOOP) BACK ; IMMEDIATE

I used ENDIF instead of THEN throughout.

And finally, note that : TEST 10 0 DO I . LOOP ; works as expected in Talbot,
sequencing through loops 0 through 9 and stopping before 10.

eForth

eForth by Frank Hogg Laboratory is available on the (CoCo Archive). It was downloaded from:

http://www.colorcomputerarchive.com/coco/Disks/Programming/ under the title:

eFORTH (Keyboard Patch) (Frank Hogg Laboratory).zip

http://www.colorcomputerarchive.com/coco/Disks/Programming/

Benchmarking CF83 Forth -- 2019/04/26 -- Page 21 of 85

The original “eFORTH (Frank Hogg Laboratory).zip” (without the keyboard patch) is also available on the
(CoCo Archive) but it does not appear to work.

eForth uses its own (apparently PMODE 4) text screen, which is 51 characters wide by 24
characters high.

eForth is an 83-Standard Forth. It uses its own line editor. No screen editor is provided. The line
editor uses a mechanism similar to Talbot Colorforth’s line editor, e.g.

 n2 t to place the cursor on line number n2
 p Text to be Inserted to overwrite the text on the selected line.

Refer to the eForth manual for further details.

The line editor provides the wipe word to clear the block. But it can’t be used by itself. Instead,
you have to use the “editor wipe” two-word command.

The first line of each block is intended (as is usual in Forth) to be a comment. But, you don’t add
the closing parentheses yourself. eForth adds your initials, the date, and the closing parentheses
automatically. Your initials are "cee” unless you’ve previously specified otherwise (read your
manual!), and the date seems to be stuck at “23jan84” no matter what.

After you’ve finished editing a block, be sure to enter the “flush” command to save it to the
disk.

eForth does not utilize nor provide any access to the standard CoCo Timer. For the eForth runs
of the Benchmarks, it was thus necessary to use the stopwatch instead.

u. works. 1- works. j works. bell works.

In 83-Standard Forth, the word “not” does a one’s complement on the entry on the top of the
stack. While functionally correct, I chose to use the (operationally identical in this instance)
Logical not in the eForth applications, i.e. : lnot if 0 else 65535 then ;

Also, 0> is not present, so I predefined : 0> 0 > ;

And finally, note that : test 10 0 do i . loop ; works as expected in eForth,
sequencing through loops 0 through 9 and stopping before 10.

Benchmarking CF83 Forth -- 2019/04/26 -- Page 22 of 85

Appendix C -- Calibration and the CoCo Timer

The (CoCo Manual, p. 221) tells us that:

Your computer has a built-in timer that measures time in sixtieths of a second
(approximately). The moment you power-up the computer, the timer begins
counting at zero. When it counts to 65535 (approximately 18 minutes later), the
timer starts over at zero. It pauses during cassette and printer operations.

So the Color Computer Timer operates at a nominal rate of 60 ticks per second. Since the tests
for this investigation are being performed on the Vcc Emulator, it’s important to calibrate the
Emulator’s Timer.

We therefore run the Emulator against the stopwatch to determine the actual number of ticks per
second we are encountering:

100 '**********
110 '* TIMTST01.BAS
120 '* TIMER TEST 01
130 '* MDJ 2019/01/16
140 '**********
150 'ZERO THE TIMER
160 POKE 274,0
170 POKE 275,0
180 'GET THE CURRENT TIMER VALUE
190 T1=PEEK(274)
200 T2=PEEK(275)
210 T=(T1*256)+T2
220 PRINT T;
230 GOTO 190
240 'TIME THE RUN WITH A
250 ' STOPWATCH.
260 'CLICK THE BREAK KEY ON THE
270 ' COCO AT THE SAME MOMENT
280 ' THAT YOU CLICK THE
290 ' STOPWATCH.
300 'DIVIDE THE LAST REPORTED
310 ' TIMER VALUE BY THE NUMBER
320 ' OF SECONDS ELAPSED TO GET
330 ' THE APPROXIMATION OF THE
340 ' NUMBER OF TICKS PER
350 ' SECOND.

Benchmarking CF83 Forth -- 2019/04/26 -- Page 23 of 85

Timer Test Results:

Run Timer Stopwatch Ticks/Second

 1 3573 60.10 59.45
 2 3583 60.20 59.52
 3 3590 60.30 59.54
 4 3574 60.16 59.41
 5 3587 60.24 59.55
 6 3580 60.12 59.55
 7 3584 60.27 59.47
 8 3575 60.16 59.42
 9 3578 60.11 59.52
 10 3587 60.28 59.51

Mean 59.494
 s 0.0527

Therefore, in all our tests, when converting from reported Timer values to equivalent minutes
and seconds, we assume the CoCo Timer is operating at a uniform rate of 59.494 ticks/second.

Benchmarking CF83 Forth -- 2019/04/26 -- Page 24 of 85

Appendix D -- Brute Force Primes Benchmark

Our Brute Force Primes Benchmark is an adaptation, in Basic, Assembly Language, and the
various Forths, of Calmatory’s Basic Brute Force method in C, with no optimizations, as
presented at:

http://www.xtremesystems.org/forums/showthread.php?256948-Optimizing-code-Brute-force-
prime-number-generator

Our method finds all the prime numbers up to 290. The number 290 was chosen because, in
Basic, the timer values obtained approached the timer limit of 65535. Thus the timer would not
roll over during the Basic runs and, simultaneously, the other runs would enjoy the greatest
possible precision of results within the limit imposed by the Basic runs.

The Basic Program:

100 '**********
110 '* BFPRIMES.BAS
120 '* BENCHMARK TESTER
130 '* MDJ 2019/01/16
140 '**********
150 'ZERO THE COCO TIMER
160 POKE 274,0
170 POKE 275,0
180 '*****
190 'BRUTE FORCE PRIMES
200 '*****
210 'SET LIMIT
220 L=290
230 DIM P(L)
240 FOR I=1 TO L
250 P(L)=0
260 NEXT I
270 P(2)=1
280 'GET THE PRIMES
290 FOR I=3 TO L
300 Q3=1
310 FOR J=2 TO I-1
320 Q=I/J
330 Q1=FIX(Q)
340 Q2=Q-Q1
350 IF(NOT(Q2>0)) THEN Q3=0
360 NEXT J
370 P(I)=Q3

http://www.xtremesystems.org/forums/showthread.php?256948-Optimizing-code-Brute-force-prime-number-generator
http://www.xtremesystems.org/forums/showthread.php?256948-Optimizing-code-Brute-force-prime-number-generator

Benchmarking CF83 Forth -- 2019/04/26 -- Page 25 of 85

380 NEXT I
390 'GET THE COCO TIMER VALUE
400 T1=PEEK(274)
410 T2=PEEK(275)
420 T=(T1*256)+T2
930 '*****
940 'REPORT THE RESULTS
950 PRINT "LIMIT: ";L
960 PRINT "PRIMES: ";
970 FOR I=1 TO L
980 IF(P(I)=1) THEN PRINT I;", ";
990 NEXT I
1000 PRINT"TIMER = ";T

 Run Timer

 1 62844
 2 62847
 3 62882
 4 62890
 5 62844
 6 62853
 7 62814
 8 62864
 9 62876
 10 62864

Mean 62857.8
 s 22.2850

 = 1056.54 seconds

 = 17 minutes 36.54 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 26 of 85

The Assembly Language Program without the assembly:

00100 **********
00110 * BFPRIM.ASM
00120 * BRUTE FORCE PRIMES BENCHMARK
00130 * MDJ 2019/01/19
00140 **********
00150 ORG $3200
00160 PSHS A,B,X,Y
00170 JMP GP
00180 Q3 RMB 1 PRIME FLAG: 1 = PRIME
00190 LIMIT RMB 2 TEST 4 THROUGH 290
00200 L1 RMB 2 L1 = LIMIT + 1
00220 TEMP RMB 2
00230 PARRAY RMB 291 PRIMES ARRAY
00260 GP LDX #4 OUTER LOOP COUNTER
00270 GP1 CMPX L1
00280 BEQ GP6 GO IF OUTER LOOP COMPLETE
00290 LDA #1 SET PRIME FLAG
00300 STA Q3
00310 LDY #2 INNER LOOP COUNTER
00320 GP2 STX TEMP
00330 CMPY TEMP
00340 BEQ GP5 GO IF INNER LOOP COMPLETE
00350 TFR X,D
00360 STY TEMP
00370 GP3 SUBD TEMP
00380 CMPD #0
00390 BGT GP3 GO CONTINUE CALCULATION
00400 BLT GP4 MOD > 0 (DIVISION NOT EXACT)
00410 CLRA MOD = 0 (DIVISION IS EXACT)
00420 STA Q3 CLEAR PRIME FLAG
00430 GP4 LEAY 1,Y INCREMENT INNER LOOP COUNTER
00440 BRA GP2
00450 GP5 PSHS X,Y STORE THE PRIMES ARRAY ENTRY
00460 LDY #$320C START OF PARRAY
00470 TFR Y,D
00480 STX TEMP
00490 ADDD TEMP
00500 TFR D,X
00510 LDA Q3 GET PRIME FLAG
00520 STA ,X PUT IT TO PRIMES ARRAY
00530 PULS X,Y
00540 LEAX 1,X INCREMENT OUTER LOOP COUNTER
00550 BRA GP1
00580 GP6 PULS A,B,X,Y
00590 RTS RETURN TO BASIC

Benchmarking CF83 Forth -- 2019/04/26 -- Page 27 of 85

00600 END

100 '**********
110 '* BFPRIM.BAS
120 '* BASIC SUPERVISOR FOR
130 '* BFPRIM.ASM
140 '* BRUTE FORCE PRIMES BENCHMARK
150 '* MDJ 2019/01/19
160 '**********
170 CLEAR 1024, &H31FF
180 LOADM "BFPRIM.BIN"
200 POKE &H3206, &H1 ' LIMIT = 290
210 POKE &H3207, &H22
220 POKE &H3208, &H1 ' L1 = 291
230 POKE &H3209, &H23
240 ' ZERO THE PRIMES ARRAY
250 FOR I = 0 TO 290
260 I1 = &H320C + I
270 POKE I1, 0
280 NEXT I
290 ' SET THE FIRST TWO PRIMES
300 POKE &H320E, 1
310 POKE &H320F, 1
311 POKE 274, 0
312 POKE 275, 0
320 EXEC &H3200 ' GO GET THE PRIMES
322 T1 = PEEK(274)
323 T2 = PEEK(275)
324 T = (T1 * 256) + T2
330 'REPORT THE RESULTS
340 PRINT "PRIMES: ";
350 FOR I = 0 TO 290
360 I1 = &H320C + I
370 I2 = PEEK(I1)
380 IF (I2 = 1) THEN PRINT I;",";
390 NEXT I
400 PRINT "TIMER = ";
420 PRINT T
430 END

Benchmarking CF83 Forth -- 2019/04/26 -- Page 28 of 85

The Assembly Language Program with the assembly, but without the comments:

 00100 **********
 00110 * BFPRIM.ASM
 00120 * BRUTE FORCE PRIMES BENCHMARK
 00130 * MDJ 2019/01/19
 00140 **********
3200 00150 ORG $3200
3200 34 36 00160 PSHS A,B,X,Y
3202 7E 332F 00170 JMP GP
3205 00180 Q3 RMB 1
3206 00190 LIMIT RMB 2
3208 00200 L1 RMB 2
320A 00220 TEMP RMB 2
320C 00230 PARRAY RMB 291
332F 8E 0004 00260 GP LDX #4
3332 BC 3208 00270 GP1 CMPX L1
3335 27 46 00280 BEQ GP6
3337 86 01 00290 LDA #1
3339 B7 3205 00300 STA Q3
333C 108E 0002 00310 LDY #2
3340 BF 320A 00320 GP2 STX TEMP
3343 10BC 320A 00330 CMPY TEMP
3347 27 19 00340 BEQ GP5
3349 1F 10 00350 TFR X,D
334B 10BF 320A 00360 STY TEMP
334F B3 320A 00370 GP3 SUBD TEMP
3352 1083 0000 00380 CMPD #0
3356 2E F7 00390 BGT GP3
3358 2D 04 00400 BLT GP4
335A 4F 00410 CLRA
335B B7 3205 00420 STA Q3
335E 31 21 00430 GP4 LEAY 1,Y
3360 20 DE 00440 BRA GP2
3362 34 30 00450 GP5 PSHS X,Y
3364 108E 320C 00460 LDY #$320C
3368 1F 20 00470 TFR Y,D
336A BF 320A 00480 STX TEMP
336D F3 320A 00490 ADDD TEMP
3370 1F 01 00500 TFR D,X
3372 B6 3205 00510 LDA Q3
3375 A7 84 00520 STA ,X
3377 35 30 00530 PULS X,Y
3379 30 01 00540 LEAX 1,X
337B 20 B5 00550 BRA GP1
337D 35 36 00580 GP6 PULS A,B,X,Y
337F 39 00590 RTS

Benchmarking CF83 Forth -- 2019/04/26 -- Page 29 of 85

 0000 00600 END

00000 TOTAL ERRORS

GP 332F
GP1 3332
GP2 3340
GP3 334F
GP4 335E
GP5 3362
GP6 337D
L1 3208
LIMIT 3206
PARRAY 320C
Q3 3205
TEMP 320A

Run Timer

 1 345
 2 345
 3 345
 4 345
 5 345
 6 345
 7 345
 8 345
 9 345
 10 345

Mean 345
 s 0

 = 5.80 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 30 of 85

The CF83 Forth Program:

BLOCK NUMBER 1

(CF83 Brute Force Primes Benchmark Test - 1/2)
variable q3
variable limit 290 limit !
(Make array with 291 byte entries, 0 through 290)
variable primesArray 289 allot
variable timerValue
: zeroTheArray (--) limit @ 0 do 0 primesArray i + c! loop ;
: getPrimes (--)
 limit @ 4 do
 1 q3 !
 i 1- 2 do
 j i mod 0> not (if NOT 0>)
 if 0 q3 ! then
 loop
 q3 @ primesArray i + c!
 loop ;

BLOCK NUMBER 2

(CF83 Brute Force Primes Benchmark Test - 2/2)
: reportResults (--) ." Limit: " limit @ u. cr
 ." Primes: "
 limit @ 2 do
 primesArray i + c@
 if i u. ." , " then
 loop
 ." Timer = " timerValue @ u. ;
: run (--)
 zeroTheArray
 1 primesArray 2+ c! 1 primesArray 3 + c!
 0 274 ! (Zero the CoCo timer)
 getPrimes
 274 @ timerValue ! (Get the CoCo timer value)
 reportResults ;

Benchmarking CF83 Forth -- 2019/04/26 -- Page 31 of 85

 Run Timer

 1 6774
 2 6774
 3 6774
 4 6773
 5 6774
 6 6773
 7 6773
 8 6774
 9 6774
 10 6773

Mean 6773.6
 s 0.51640

 = 113.85 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 32 of 85

The Armadillo ColorForth 2.0 Program:

BLOCK NUMBER 1

(ARMADILLO BRUTE FORCE PRIMES BENCHMARK - 1/2)
0 VARIABLE Q3 0 VARIABLE TEMP : NOT IF 0 ELSE 65535 THEN ;
0 VARIABLE LIMIT 290 LIMIT !
(MAKE ARRAY WITH 291 BYTE ENTRIES, 0 THROUGH 290)
0 VARIABLE PRIMESARRAY 289 ALLOT
0 VARIABLE TIMERVALUE
: ZEROTHEARRAY (--) LIMIT @ 0 DO 0 PRIMESARRAY I + C! LOOP ;
: GETPRIMES (--)
 LIMIT @ 4 DO I TEMP !
 1 Q3 !
 TEMP @ 1 - 2 DO
 TEMP @ I MOD 0 > NOT (IF NOT 0>)
 IF 0 Q3 ! THEN
 LOOP
 Q3 @ PRIMESARRAY I + C!
 LOOP ;

BLOCK NUMBER 2

(ARMADILLO BRUTE FORCE PRIMES BENCHMARK - 2/2)
: REPORTRESULTS (--) ." LIMIT: " LIMIT @ . CR
 ." PRIMES: "
 LIMIT @ 2 DO
 PRIMESARRAY I + C@
 IF I . ." , " THEN
 LOOP
 ." TIMER = " TIMERVALUE @ . ;
: RUN (--)
 ZEROTHEARRAY
 1 PRIMESARRAY 2 + C! 1 PRIMESARRAY 3 + C!
 0 274 ! (ZERO THE COCO TIMER)
 GETPRIMES
 274 @ TIMERVALUE ! (GET THE COCO TIMER VALUE)
 REPORTRESULTS ;

Benchmarking CF83 Forth -- 2019/04/26 -- Page 33 of 85

 Run Timer

 1 9590
 2 9589
 3 9590
 4 9589
 5 9590
 6 9589
 7 9589
 8 9589
 9 9590
 10 9590

Mean 9589.5
 s 0.52705

 = 161.18 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 34 of 85

The pd10 SuperForth Program:

(BFPRIME1.DAT)
(PD-10 SUPERFORTH - 1/4)
(BRUTE FORCE PRIMES BENCHMARK)
(MDJ 2019-01-20)

(WORD: NOT PRESENT IN PD-10 SUPERFORTH)
: 0> 0 > ;

(NOTE: FIG REQUIRES NUMBER BEFORE VARIABLE)

(NOTE: N1 N2 DO LOOP RUNS UP THROUGH N1)
(INSTEAD OF JUST UP TO IT.)

0 VARIABLE Q3
0 VARIABLE LIMIT 290 LIMIT !
0 VARIABLE L1
0 VARIABLE TEMP
(MAKE ARRAY W/291 BYTE ENTRIES, 0 THRU 290)
0 VARIABLE PRIMESARRAY 289 ALLOT
0 VARIABLE TIMERVALUE

: ZA 0 PRIMESARRAY TEMP @ + C! ;

: ZEROTHEARRAY LIMIT @ 1- 0 DO I TEMP ! ZA LOOP ;

: PA LIMIT @ 1- 0 DO 1 PRIMESARRAY I + C! LOOP ;
: PB LIMIT @ 1- 0 DO PRIMESARRAY I + C@ U. LOOP ;

(BFPRIME2.DAT)
(PD-10 SUPERFORTH - 2/4)
(BRUTE FORCE PRIMES BENCHMARK)
(MDJ 2019-01-20)

0 VARIABLE TEMP1
0 VARIABLE TEMP2

: GA 1 Q3 ! ;
: GB IF 0 Q3 ! ENDIF ;
: GC Q3 @ PRIMESARRAY TEMP1 @ + C! ;

: GD TEMP1 @ TEMP2 @ MOD 0> NOT ;
: GE TEMP1 @ 2 - 2 DO I TEMP2 ! GD GB LOOP ;

: GETPRIMES LIMIT @ 1- 4 DO I TEMP1 ! GA GE GC LOOP ;

Benchmarking CF83 Forth -- 2019/04/26 -- Page 35 of 85

(BFPRIME3.DAT)
(PD-10 SUPERFORTH - 3/4)
(BRUTE FORCE PRIMES BENCHMARK)
(MDJ 2019-01-20)

0 VARIABLE TEMP3

: RA ." LIMIT: " LIMIT @ U. CR ." PRIMES: " ;
: RB LIMIT @ 1- 2 ;
: RC PRIMESARRAY TEMP3 @ + C@ ;
: RD IF TEMP3 @ U. ." , " ENDIF ;
: RE ." TIMER = " TIMERVALUE @ U. ;

: REPORTRESULTS RA RB DO I TEMP3 ! RC RD LOOP RE ;

(BFPRIME4.DAT)
(PD-10 SUPERFORTH - 4/4)
(BRUTE FORCE PRIMES BENCHMARK)
(MDJ 2019-01-20)

: XA 1 PRIMESARRAY 2 + C! ;
: XB 1 PRIMESARRAY 3 + C! ;
: XC 0 274 ! ;
: XD 274 @ TIMERVALUE ! ;

: RUN ZEROTHEARRAY XA XB XC GETPRIMES XD REPORTRESULTS ;

 Run Timer

 1 5869
 2 5869
 3 5869
 4 5869
 5 5869
 6 5869
 7 5869
 8 5869
 9 5869
 10 5869

Mean 5869
 s 0

 = 98.65 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 36 of 85

The Talbot ColorForth Program:

This listing has been modified to eliminate trailing blank lines.

 SCR 1
 0 (BFPRI.BIN)

1 (TALBOT COLORFORTH 1.1)
 2 (BRUTE FORCE PRIMES BNCHMRK)
 3 (MDJ 2019-01-21)
 4 : NOT IF 0 ELSE 65535 ENDIF ;
 5 : U. 0 <# #S #> TYPE SPACE ;
 6 0 VARIABLE Q3
 7 0 VARIABLE TEMP
 8 0 VARIABLE LIMIT 290 LIMIT !
 9 0 VARIABLE PRIMESARRAY 289 ALLOT
 10
 11 0 VARIABLE TIMERVALUE
 12 : ZEROTHEARRAY (--)
 13 LIMIT @ 0 DO
 14 0 PRIMESARRAY I + C!
 15 LOOP ;
 16 : GETPRIMES (--)
 17 LIMIT @ 4 DO I TEMP !
 18 1 Q3 !
 19 TEMP @ 1 - 2 DO
 20 TEMP @ I MOD 0 > NOT
 21 IF 0 Q3 ! ENDIF
 22 LOOP
 23 Q3 @ PRIMESARRAY I + C!
 24 LOOP ;

 SCR 2
 0 : REPORTRESULTS (--)
 1 ." LIMIT: " LIMIT @ U. CR
 2 ." PRIMES: "
 3 LIMIT @ 2 DO
 4 PRIMESARRAY I + C@
 5 IF I U. ." , " ENDIF
 6 LOOP
 7 ." TIMER = "
 8 TIMERVALUE @ U. ;
 9 : RUN (--)
 10 ZEROTHEARRAY
 11 1 PRIMESARRAY 2 + C!
 12 1 PRIMESARRAY 3 + C!
 13 0 274 ! (ZERO COCO TIMER)
 GETPRIMES

Benchmarking CF83 Forth -- 2019/04/26 -- Page 37 of 85

 15 274 @ (GET COCO TIMER)
 16 TIMERVALUE !
 17 REPORTRESULTS ;

 Run Timer

 1 7745
 2 7745
 3 7745
 4 7745
 5 7745
 6 7745
 7 7745
 8 7745
 9 7745
 10 7745

Mean 7745
 s 0

 = 130.18 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 38 of 85

The eForth Program:

This eForth printout was manually massaged a bit -
but just to omit erroneous 23jan84 date and the
blank lines at the end of each block.

Block # 1
 0 (eForth Brute Force Primes Benchmark - 1/4)
 1 : 0> 0 > ;
 2 : lnot if 0 else 65535 then ;
 3 variable q3
 4 variable limit 290 limit !
 5 (make array with 291 byte entries, 0 through 290)
 6 variable primesArray 289 allot
 7 variable timerValue
 8 : zeroTheArray (--) limit @ 0 do
 9 0 primesArray i + c! loop ;
10
11
12 : pa limit @ 0 do
13 1 primesArray i + c! loop ;
14 : pb limit @ 0 do
15 primesArray i + c@ u. loop ;

Block # 2
 0 (eForth Brute Force Primes Benchmark - 2/4)
 1 : getPrimes (--)
 2 limit @ 4 do
 3 1 q3 !
 4 i 1- 2 do
 5 j i mod 0> lnot (if NOT 0>)
 6 if 0 q3 ! then
 7 loop
 8 q3 @ primesArray i + c!
 9 loop ;

Block # 3
 0 (eForth Brute Force Primes Benchmark - 3/4)
 1 : reportResults (--)
 2 ." Limit : " limit @ u. cr
 3 ." Primes: "
 4 limit @ 2 do
 5 primesArray i + c@
 6 if i u. ." , " then
 7 loop
 8 ." Timer = " timerValue @ u. ;

Benchmarking CF83 Forth -- 2019/04/26 -- Page 39 of 85

Block # 4
 0 (eForth Brute Force Primes Benchmark - 4/4)
 1 : run (--)
 2 zeroTheArray
 3 1 primesArray 2 + c!
 4 1 primesArray 3 + c!
 5 bell (Signal user to start the stopwatch)
 6 getPrimes
 7 bell (Signal user to stop the stopwatch)
 8 reportResults ;

 Run Seconds

 1 50.24
 2 50.37
 3 50.39
 4 50.38
 5 50.35
 6 50.40
 7 50.34
 8 50.34
 9 50.34
 10 50.33

Mean 50.348
 s 0.04492

 Say 50.35 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 40 of 85

The Brute Force Primes Recap:

Assembly Language 5.80 seconds
eForth 50.35 seconds
pd10 SuperForth 98.65 seconds
CF83 Forth 113.85 seconds
Talbot ColorForth 1.1 130.18 seconds
Armadillo ColorForth 2.0 161.18 seconds
Basic 1056.34 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 41 of 85

Appendix E -- Sieve of Eratosthenes Benchmark

Our Sieve of Eratosthenes Benchmark is an adaptation, in Basic, Assembly Language, and the
various Forths, of RosettaCode.org’s Sieve of Eratosthenes Benchmark in Forth, as presented at:

https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Forth

Our method finds all the prime numbers up to 4364. The number 4364 was chosen because, in
our Basic Program, any larger number results in an OM ERROR.

The Basic Program:

100 '**********
110 '* ERPRIMES.BAS
120 '* SIEVE OF ERATOSTHENES
130 '* BENCHMARK
140 '* MDJ 2019/01/23
150 '**********
160 'SET LIMIT
170 L=4386
180 DIM P(L) 'PRIMES ARRAY
190 'SET THE ARRAY
200 FOR I=0 TO L 'OUTER LOOP COUNTER
210 P(I) = 1
220 NEXT I
230 P(0)=0
240 P(1)=0
250 'ZERO THE COCO TIMER
260 POKE 274,0
270 POKE 275,0
280 'GET THE PRIMES
290 FOR I = 2 TO L
300 IF (P(I) = 0) GOTO 400 'SKIP
310 PM = I * I 'SQUARE OF THE INDEX
320 IF (PM > L) GOTO 420 'DONE
330 P(PM) = 0
340 PS = PM 'INNER LOOP START INDEX
350 FOR J = PS TO L STEP I 'INNER LOOP COUNTER
360 PM = PM + I
370 IF PM>L GOTO400
380 P(PM) = 0
390 NEXT J
400 NEXT I
410 'GET THE COCO TIMER VALUE
420 T1=PEEK(274)

https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Forth

Benchmarking CF83 Forth -- 2019/04/26 -- Page 42 of 85

430 T2=PEEK(275)
440 T=(T1*256)+T2
450 'REPORT THE RESULTS
460 PRINT "PRIMES: ";
470 FOR I=1 TO L
480 IF(P(I)=1) THEN PRINT I;",";
490 NEXT I
500 PRINT"TIMER = ";T
510 END

 Run Timer

 1 7523
 2 7509
 3 7515
 4 7509
 5 7520
 6 7526
 7 7509
 8 7521
 9 7519
 10 7512

Mean 7516.3
 s 6.3430

 = 126.34 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 43 of 85

The Assembly Language Program without the assembly:

00100 **********
00110 * ERPRIM.ASM
00120 * SIEVE OF ERATOSTHENES
00130 * BENCHMARK
00140 * MDJ 2019/01/24
00150 **********
00160 ORG $3200
00170 PSHS A,B,U,X,Y
00180 JMP GP
00190 LIMIT RMB 2 TEST 4 THROUGH 4364
00200 L1 RMB 2 L1 = LIMIT + 1
00210 TEMP RMB 2
00220 PADDR RMB 2 START ADDRESS OF PARRAY
00230 OENTRY RMB 2 OFFSET OF PARRAY ENTRY
00240 SINDEX RMB 2 INNER LOOP START INDEX
00250 PARRAY RMB 4365 PRIMES ARRAY
00260 GP LDD #$3211 START OF PARRAY
00280 LDX #2 OUTER LOOP COUNTER
00290 GP1 CMPX L1
00300 BEQ GP6 GO IF OUTER LOOP COMPLETE
00310 LDD PADDR GET PARRAY ENTRY
00320 STX TEMP
00330 ADDD TEMP
00340 TFR D,U
00350 LDA ,U
00360 CMPA #0
00370 BEQ GP5 SKIP IF ENTRY IS ZERO
00380 LDD TEMP SQUARE THE INDEX
00390 LDU TEMP SQUARING COUNTER
00400 LEAU -1,U
00410 GP2 CMPU #0
00420 BEQ GP3 GO IF SQUARING COMPLETE
00430 ADDD TEMP
00440 LEAU -1,U DECREMENT SQUARING COUNTER
00450 BRA GP2
00460 GP3 STD OENTRY PARRAY ENTRY OFFSET
00470 STD SINDEX INNER LOOP START INDEX
00480 CMPD LIMIT
00490 BHI GP6 EXIT IF DONE
00500 PSHS A,B,X ZERO THE ENTRY
00510 LDD PADDR
00520 ADDD OENTRY
00530 TFR D,X
00540 CLRA
00550 STA ,X

Benchmarking CF83 Forth -- 2019/04/26 -- Page 44 of 85

00560 PULS A,B,X
00570 LDY SINDEX INNER LOOP COUNTER
00580 GP4 CMPY LIMIT
00590 BHI GP5 GO IF INNER LOOP COMPLETE
00600 STX TEMP
00610 ADDD TEMP
00620 CMPD LIMIT
00630 BHI GP5 EXIT INNER LOOP IF DONE
00640 STD OENTRY
00650 PSHS A,B,X ZERO THE ENTRY
00660 LDD PADDR
00670 ADDD OENTRY
00680 TFR D,X
00690 CLRA
00700 STA ,X
00710 PULS A,B,X
00720 LEAY 1,Y INCREMENT INNER LOOP COUNTER
00730 BRA GP4
00740 GP5 LEAX 1,X INCREMENT OUTER LOOP COUNTER
00750 BRA GP1
00760 GP6 PULS A,B,U,X,Y
00770 RTS
00780 END

100 '**********
110 '* ERPRIM.BAS
120 '* BASIC SUPERVISOR FOR
130 '* ERPRIM.ASM
140 '* SIEVE OF ERATOSTHENES
150 '* BENCHMARK
160 '* MDJ 2019/01/25
170 '**********
180 CLEAR 1024, &H31FF
190 LOADM "ERPRIM.BIN"
200 POKE &H3205, &H11 ' LIMIT = 4364
210 POKE &H3206, &H0C
220 POKE &H3207, &H11 ' L1 = 4365
230 POKE &H3208, &H0D
240 ' SET THE PRIMES ARRAY
250 FOR I = 0 TO 4364
260 I1 = &H3211 + I
270 POKE I1, 1
280 NEXT I
290 ' CLEAR ENTRIES ZERO AND ONE
300 POKE &H3211, 0
310 POKE &H3212, 0
311 'ZERO THE COCO TIMER

Benchmarking CF83 Forth -- 2019/04/26 -- Page 45 of 85

320 POKE 274, 0
330 POKE 275, 0
340 EXEC &H3200 ' GO GET THE PRIMES
341 'GET THE COCO TIMER VALUE
350 T1 = PEEK(274)
360 T2 = PEEK(275)
370 T = (T1 * 256) + T2
380 'REPORT THE RESULTS
390 PRINT "PRIMES: ";
400 FOR I = 0 TO 4364
410 I1 = &H3211 + I
420 I2 = PEEK(I1)
430 IF (I2 = 1) THEN PRINT I;",";
440 NEXT I
450 PRINT "TIMER = ";
460 PRINT T
470 END

Benchmarking CF83 Forth -- 2019/04/26 -- Page 46 of 85

The Assembly Language Program with the assembly, but without the comments:

 00100 **********
 00110 * ERPRIM.ASM
 00120 * SIEVE OF ERATOSTHENES
 00130 * BENCHMARK
 00140 * MDJ 2019/01/24
 00150 **********
3200 00160 ORG $3200
3200 34 76 00170 PSHS A,B,U,X,Y
3202 7E 431E 00180 JMP GP
3205 00190 LIMIT RMB 2
3207 00200 L1 RMB 2
3209 00210 TEMP RMB 2
320B 00220 PADDR RMB 2
320D 00230 OENTRY RMB 2
320F 00240 SINDEX RMB 2
3211 00250 PARRAY RMB 4365
431E CC 3211 00260 GP LDD #$3211
4321 FD 320B 00270 STD PADDR
4324 8E 0002 00280 LDX #2
4327 BC 3207 00290 GP1 CMPX L1
432A 27 71 00300 BEQ GP6
432C FC 320B 00310 LDD PADDR
432F BF 3209 00320 STX TEMP
4332 F3 3209 00330 ADDD TEMP
4335 1F 03 00340 TFR D,U
4337 A6 C4 00350 LDA ,U
4339 81 00 00360 CMPA #0
433B 27 5C 00370 BEQ GP5
433D FC 3209 00380 LDD TEMP
4340 FE 3209 00390 LDU TEMP
4343 33 5F 00400 LEAU -1,U
4345 1183 0000 00410 GP2 CMPU #0
4349 27 07 00420 BEQ GP3
434B F3 3209 00430 ADDD TEMP
434E 33 5F 00440 LEAU -1,U
4350 20 F3 00450 BRA GP2
4352 FD 320D 00460 GP3 STD OENTRY
4355 FD 320F 00470 STD SINDEX
4358 10B3 3205 00480 CMPD LIMIT
435C 22 3F 00490 BHI GP6
435E 34 16 00500 PSHS A,B,X
4360 FC 320B 00510 LDD PADDR
4363 F3 320D 00520 ADDD OENTRY
4366 1F 01 00530 TFR D,X
4368 4F 00540 CLRA

Benchmarking CF83 Forth -- 2019/04/26 -- Page 47 of 85

4369 A7 84 00550 STA ,X
436B 35 16 00560 PULS A,B,X
436D 10BE 320F 00570 LDY SINDEX
4371 10BC 3205 00580 GP4 CMPY LIMIT
4375 22 22 00590 BHI GP5
4377 BF 3209 00600 STX TEMP
437A F3 3209 00610 ADDD TEMP
437D 10B3 3205 00620 CMPD LIMIT
4381 22 16 00630 BHI GP5
4383 FD 320D 00640 STD OENTRY
4386 34 16 00650 PSHS A,B,X
4388 FC 320B 00660 LDD PADDR
438B F3 320D 00670 ADDD OENTRY
438E 1F 01 00680 TFR D,X
4390 4F 00690 CLRA
4391 A7 84 00700 STA ,X
4393 35 16 00710 PULS A,B,X
4395 31 21 00720 LEAY 1,Y
4397 20 D8 00730 BRA GP4
4399 30 01 00740 GP5 LEAX 1,X
439B 20 8A 00750 BRA GP1
439D 35 76 00760 GP6 PULS A,B,U,X,Y
439F 39 00770 RTS
 0000 00780 END

00000 TOTAL ERRORS

GP 431E
GP1 4327
GP2 4345
GP3 4352
GP4 4371
GP5 4399
GP6 439D
L1 3207
LIMIT 3205
OENTRY 320D
PADDR 320B
PARRAY 3211
SINDEX 320F
TEMP 3209

Benchmarking CF83 Forth -- 2019/04/26 -- Page 48 of 85

 Run Timer

 1 45
 2 46
 3 46
 4 46
 5 46
 6 46
 7 46
 8 46
 9 46
 10 46

Mean 45.9
 s 0.3162

 = 0.77 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 49 of 85

The CF83 Forth Program:

BLOCK NUMBER 5

(CF83 Eratosthenes Sieve Primes Benchmark Test - 1/2)
(cf. https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Forth)

variable timerValue
: 2dup (32b -- 32b 32b) over over ;
: primes? (n -- flag) here + c@ 0= ;
: erase (addr u --) 0 fill ;
: composite! (n --) here + 1 swap c! ;

: sieve (n --) here over erase 2
 begin 2dup dup * >
 while dup primes?
 if 2dup dup * do i composite! dup +loop
 then 1+
 repeat drop ;

BLOCK NUMBER 6

(CF83 Eratosthenes Sieve Primes Benchmark Test - 2/2)

: reportResults (--) cr ." Primes: "
 4364 2 do i primes? if i . then loop
 ." Timer = " timerValue @ u. ;
: run (--)
 0 274 ! (Zero the CoCo timer)
 4364 sieve
 274 @ timerValue ! (Get the CoCo timer value)
 reportResults ;

Benchmarking CF83 Forth -- 2019/04/26 -- Page 50 of 85

 Run Timer

 1 280
 2 280
 3 280
 4 280
 5 280
 6 279
 7 280
 8 280
 9 279
 10 280

Mean 279.8
 s 0.4216

 = 4.70 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 51 of 85

The Armadillo ColorForth 2.0 Program:

BLOCK NUMBER 4

(ARMADILLO ERATOSTHENES SIEVE PRIMES BENCHMARK TEST - 1/2)
0 VARIABLE TIMERVALUE
: 2DUP (32B -- 32B 32B) OVER OVER ;
: PRIMES? (N -- FLAG) HERE + C@ 0= ;
: ERASE (ADDR U --) 0 FILL ;
: COMPOSITE! (N --) HERE + 1 SWAP C! ;

: SIEVE (N --) HERE OVER ERASE 2
 BEGIN 2DUP DUP * >
 WHILE DUP PRIMES?
 IF 2DUP DUP * DO I COMPOSITE! DUP +LOOP
 THEN 1+
 REPEAT DROP ;

BLOCK NUMBER 5

(ARMADILLO ERATOSTHENES SIEVE PRIMES BENCHMARK TEST - 2/2)

: REPORTRESULTS (--) CR ." PRIMES: "
 4364 2 DO I PRIMES? IF I . THEN LOOP
 ." TIMER = " TIMERVALUE @ . ;

: RUN (--)
 0 274 ! (ZERO THE COCO TIMER)
 4364 SIEVE
 274 @ TIMERVALUE ! (GET THE COCO TIMER VALUE)
 REPORTRESULTS ;

Benchmarking CF83 Forth -- 2019/04/26 -- Page 52 of 85

 Run Timer

 1 236
 2 236
 3 236
 4 236
 5 236
 6 236
 7 236
 8 236
 9 236
 10 236

Mean 236
 s 0

 = 3.97 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 53 of 85

The pd10 SuperForth Program:

(ERPRIME1.DAT)
(PD-10 SUPERFORTH - 1/2)
(SIEVE OF ERATOSTHENES PRIMES BENCHMARK)
(MDJ 2019-03-24)

(NOTE: N1 N2 DO LOOP RUNS UP THROUGH N1)
(INSTEAD OF JUST UP TO IT.)

(NOTE: PD-10 FILL DOES NOT APPEAR TO WORK WITH HERE)
(USE AHERE VARIABLE ARRAY INSTEAD)

0 VARIABLE AHERE 4364 ALLOT

: ERASE 0 FILL ;

: PRMQ AHERE + C@ 0= ;

: CMPST AHERE + 1 SWAP C! ;

: S1 IF 2DUP DUP * DO I CMPST DUP LOOP+ ENDIF 1+ ;

: S2 BEGIN 2DUP DUP * > WHILE DUP PRMQ S1 REPEAT ;

: SIEVE AHERE OVER ERASE 2 S2 DROP ;

(ERPRIME2.DAT)
(PD-10 SUPERFORTH - 2/2)
(SIEVE OF ERATOSTHENES PRIMES BENCHMARK)
(MDJ 2019-03-24)

0 VARIABLE TIMERVALUE

: R1 4364 2 DO I PRMQ IF I . ENDIF LOOP ;

: R2 ." TIMER = " TIMERVALUE @ U. ;

: RR CR ." PRIMES: " R1 R2 ;

: U1 0 274 ! 4364 SIEVE ;

: U2 274 @ TIMERVALUE ! RR ;

: RUN U1 U2 ;

Benchmarking CF83 Forth -- 2019/04/26 -- Page 54 of 85

 Run Timer

 1 268
 2 268
 3 268
 4 268
 5 268
 6 268
 7 268
 8 268
 9 268
 10 268

Mean 268
 s 0

 = 4.50 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 55 of 85

The Talbot ColorForth Program:

This listing has been modified to eliminate trailing blank lines.

 SCR 1
 0 (ERPRI.BIN)
 1 (TALBOT COLORFORTH 1.1)
 2 (ERATOSTHENES PRIMES BNCHMRK)
 3 (MDJ 2019-03-28)
 4 0 VARIABLE AHERE 4364 ALLOT
 5 : 2DUP OVER OVER ;
 6 : WHILE [COMPILE] IF 2+
 7 ; IMMEDIATE
 8 : AGAIN 1 ?PAIRS COMPILE
 9 BRANCH BACK ; IMMEDIATE
 10 : REPEAT >R >R [COMPILE] AGAIN
 11 R> R> 2 - [COMPILE] ENDIF
 12 ; IMMEDIATE
 13 : +LOOP 3 ?PAIRS COMPILE (+LOOP)
 14 BACK ; IMMEDIATE
 15
 16 0 VARIABLE TIMERVALUE
 17 : PRIMES? AHERE + C@ 0= ;
 18 : COMP! AHERE + 1 SWAP C! ;
 19 : S1 IF 2DUP DUP * DO I COMP!
 20 DUP +LOOP ENDIF 1+ ;
 21 : SIEVE AHERE OVER ERASE 2
 22 BEGIN 2DUP DUP * >
 23 WHILE DUP PRIMES? S1
 24 REPEAT DROP ;

 SCR 2
 0 (ERPRI.BIN)
 1 : R1 4364 2 DO I PRIMES?
 2 IF I . ENDIF LOOP ;
 3 : REPORTRESULTS
 4 CR ." PRIMES: " R1
 5 ." TIMER = "
 6 TIMERVALUE @ . ;
 7 : RUN 0 274 ! 4364 SIEVE 274 @
 8 TIMERVALUE !
 9 REPORTRESULTS ;

Benchmarking CF83 Forth -- 2019/04/26 -- Page 56 of 85

 Run Timer

 1 195
 2 195
 3 195
 4 195
 5 195
 6 195
 7 195
 8 195
 9 195
 10 195

Mean 195
 s 0

 = 3.28 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 57 of 85

The eForth Program:

This eForth printout was manually massaged a bit
but just to omit erroneous 23jan84 date and the
blank lines at the end of each block.

Block # 7
 0 (eForth Eratosthenes Sieve Primes Benchmark - 1/2)
 1
 2 : primes? (n -- flag) here + c@ 0= ;
 3
 4 : composite! (n --) here + 1 swap c! ;
 5
 6 : sieve (n --) here over erase 2
 7 begin 2dup dup * >
 8 while dup primes?
 9 if 2dup dup * do i composite! dup +loop
10 then 1+
11 repeat drop ;

Block # 8
 0 (eForth Eratosthenes Sieve Primes Benchmark - 2/2)
 1
 2 : reportresults (--) cr ." Primes: "
 3 4364 2 do i primes? if i . then loop ;
 4
 5 : run (--)
 6 bell (Signal user to start the stopwatch)
 7 4364 sieve
 8 bell (Signal user to stop the stopwatch)
 9 reportresults ;

Benchmarking CF83 Forth -- 2019/04/26 -- Page 58 of 85

 Run Seconds

 1 2.88
 2 2.95
 3 2.84
 4 2.88
 5 2.84
 6 2.86
 7 2.86
 8 2.87
 9 2.86
 10 2.90

Mean 2.874
 s 0.03239

 Say 2.87 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 59 of 85

The Sieve of Eratosthenes Primes Recap:

Assembly Language 0.77 seconds
eForth 2.87 seconds
Talbot ColorForth 1.1 3.28 seconds
Armadillo ColorForth 2.0 3.97 seconds
pd10 SuperForth 4.50 seconds
CF83 Forth 4.70 seconds
Basic 126.34 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 60 of 85

Appendix F -- Add Loops Benchmark

Our Add Loops Benchmark simply performs an addition and store 165,000 times. The number
165,000 was chosen because, in Basic, the timer values obtained approached the timer limit of
65535. Thus the timer would not roll over during the Basic runs and, simultaneously, the other
runs would enjoy the greatest possible precision of results within the limit imposed by the Basic
runs.

The Basic Program:

100 '**********
110 '* ADDLOOPS.BAS
120 '* ADDING LOOPS BENCHMARK
130 '* MDJ 2019/01/25
140 '**********
150 'ZERO THE COCO TIMER
160 POKE 274,0
170 POKE 275,0
180 'DO THE LOOPS
190 FOR I=1 TO 165
200 FOR J=1 TO 1000
210 A = 5 + 7
220 NEXT J
230 NEXT I
240 'GET THE COCO TIMER VALUE
250 T1=PEEK(274)
260 T2=PEEK(275)
270 T=(T1*256)+T2
280 'REPORT THE RESULTS
290 PRINT"TIMER = ";T
300 END

Benchmarking CF83 Forth -- 2019/04/26 -- Page 61 of 85

 Run Timer

 1 64712
 2 64804
 3 64781
 4 64745
 5 64773
 6 64763
 7 64750
 8 64743
 9 64743
 10 64753

Mean 64756.7
 s 25.171

 = 1088.46 seconds

 = 18 minutes 8.46 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 62 of 85

The Assembly Language Program without the assembly:

00100 **********
00110 * ADDLOOP.ASM
00120 * ADDING LOOPS BENCHMARK
00130 * MDJ 2019/01/26
00140 **********
00150 ORG $3200
00160 PSHS A,B,X,Y
00170 JMP GP
00180 AVAR RMB 2
00190 GP LDX #1 OUTER LOOP COUNTER
00200 GP1 CMPX #166
00210 BEQ GP4 EXIT IF OUTER LOOP COMPLETE
00220 LDY #1 INNER LOOP COUNTER
00230 GP2 CMPY #1001
00240 BEQ GP3 GO IF INNER LOOP COMPLETE
00250 LDD #5 PERFORM THE ADDITION
00260 ADDD #7
00270 STD AVAR
00280 LEAY 1,Y INCREMENT INNER LOOP COUNTER
00290 BRA GP2
00300 GP3 LEAX 1,X INCREMENT OUTER LOOP COUNTER
00310 BRA GP1
00320 GP4 PULS A,B,X,Y
00330 RTS
00340 END

100 '**********
110 '* ADDLOOP.BAS
120 '* BASIC SUPERVISOR FOR
130 '* ADDLOOP.ASM
140 '* ADDING LOOPS BENCHMARK
150 '* MDJ 2019/01/26
160 '**********
170 CLEAR 1024, &H31FF
180 LOADM "ADDLOOP.BIN"
190 'ZERO THE COCO TIMER
200 POKE 274, 0
210 POKE 275, 0
220 'PERFORM THE ADDITION LOOPS
230 EXEC &H3200
240 'GET THE COCO TIMER VALUE
250 T1 = PEEK(274)
260 T2 = PEEK(275)
270 T = (T1 * 256) + T2
280 'REPORT THE RESULTS

Benchmarking CF83 Forth -- 2019/04/26 -- Page 63 of 85

290 PRINT "TIMER = ";
300 PRINT T
310 END

Benchmarking CF83 Forth -- 2019/04/26 -- Page 64 of 85

The Assembly Language Program with the assembly, but without the comments:

 00100 **********
 00110 * ADDLOOP.ASM
 00120 * ADDING LOOPS BENCHMARK
 00130 * MDJ 2019/01/26
 00140 **********
3200 00150 ORG $3200
3200 34 36 00160 PSHS A,B,X,Y
3202 7E 3207 00170 JMP GP
3205 00180 AVAR RMB 2
3207 8E 0001 00190 GP LDX #1
320A 8C 00A6 00200 GP1 CMPX #166
320D 27 1B 00210 BEQ GP4
320F 108E 0001 00220 LDY #1
3213 108C 03E9 00230 GP2 CMPY #1001
3217 27 0D 00240 BEQ GP3
3219 CC 0005 00250 LDD #5
321C C3 0007 00260 ADDD #7
321F FD 3205 00270 STD AVAR
3222 31 21 00280 LEAY 1,Y
3224 20 ED 00290 BRA GP2
3226 30 01 00300 GP3 LEAX 1,X
3228 20 E0 00310 BRA GP1
322A 35 36 00320 GP4 PULS A,B,X,Y
322C 39 00330 RTS
 0000 00340 END

00000 TOTAL ERRORS

AVAR 3205
GP 3207
GP1 320A
GP2 3213
GP3 3226
GP4 322A

Benchmarking CF83 Forth -- 2019/04/26 -- Page 65 of 85

 Run Timer

 1 324
 2 324
 3 325
 4 324
 5 325
 6 325
 7 324
 8 324
 9 325
 10 324

Mean 324.4
 s 0.5164

 = 5.45 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 66 of 85

The CF83 Forth Program:

BLOCK NUMBER 3

(CF83 Adding Loops Benchmark - 1/1)
variable aVar
variable timerValue
: doAdds (--)
 165 0 do
 1000 0 do
 5 7 + aVar !
 loop
 loop ;
: run (--)
 0 274 ! (Zero the CoCo Timer)
 doAdds
 274 @ timerValue ! (Get the CoCo Timer Value)
 ." Timer = " timerValue @ u. ;

 Run Timer

 1 3725
 2 3725
 3 3725
 4 3725
 5 3725
 6 3725
 7 3725
 8 3725
 9 3725
 10 3725

Mean 3725
 s 0

 = 62.61 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 67 of 85

The Armadillo ColorForth 2.0 Program:

BLOCK NUMBER 3

(ARMADILLO ADDING LOOPS BENCHMARK - 1/1)
0 VARIABLE AVAR : U. 0 <# #S #> TYPE SPACE ;
0 VARIABLE TIMERVALUE
: DOADDS (--)
 165 0 DO
 1000 0 DO
 5 7 + AVAR !
 LOOP
 LOOP ;
: RUN (--)
 0 274 ! (ZERO THE COCO TIMER)
 DOADDS
 274 @ TIMERVALUE ! (GET THE COCO TIMER VALUE)
 ." TIMER = " TIMERVALUE @ U. ;

 Run Timer

 1 2538
 2 2538
 3 2538
 4 2537
 5 2538
 6 2538
 7 2537
 8 2538
 9 2538
 10 2538

Mean 2537.8
 s 0.42164

 = 42.66 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 68 of 85

The pd10 SuperForth Program:

(ADDLOOP1.DAT)
(PD-10 SUPERFORTH - 1/1)
(ADDING LOOPS BENCHMARK)
(MDJ 2019-01-26)

(NOTE: FIG REQUIRES NUMBER BEFORE VARIABLE)

(NOTE: N1 N2 DO LOOP RUNS UP THROUGH N1)
(INSTEAD OF JUST UP TO IT.)

0 VARIABLE AVAR
0 VARIABLE TIMERVALUE

: DOINNER 999 0 DO 5 7 + AVAR ! LOOP ;
: DOADDS 164 0 DO DOINNER LOOP ;

: RPT ." TIMER = " TIMERVALUE @ U. ;
: RUN 0 274 ! DOADDS 274 @ TIMERVALUE ! RPT ;

 Run Timer

 1 4142
 2 4142
 3 4142
 4 4142
 5 4142
 6 4142
 7 4142
 8 4142
 9 4142
 10 4142

Mean 4142
 s 0

 = 69.62 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 69 of 85

The Talbot ColorForth Program:

This listing has been modified to eliminate trailing blank lines.

 SCR 1
 0 (ADDLP.BIN)
 1 (TALBOT COLORFORTH 1.1)
 2 (ADDING LOOP BENCHMARK)
 3 (MDJ 2019-01-26)
 4 : U. 0 <# #S #> TYPE SPACE ;
 5 0 VARIABLE AVAR
 6 0 VARIABLE TIMERVALUE
 7 : DOADDS (--)
 8 165 0 DO
 9 1000 0 DO
 10 5 7 + AVAR !
 11 LOOP
 12 LOOP ;
 13 : RUN (--)
 14 (ZERO THE COCO TIMER)
 15 0 274 !
 16 DOADDS
 17 (GET COCO TIMER VALUE)
 18 274 @ TIMERVALUE !
 19 ." TIMER = "
 20 TIMERVALUE @ U. ;

 Run Timer

 1 2827
 2 2827
 3 2827
 4 2827
 5 2827
 6 2827
 7 2827
 8 2827
 9 2827
 10 2827

Mean 2827
 s 0

 = 47.52 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 70 of 85

The eForth Program:

This eForth printout was manually massaged a bit -
but just to omit erroneous 23jan84 date and the
blank lines at the end of the block.

Block # 5
 0 (eForth Adding Loops Benchmark - 1/1)
 1 variable aVar
 2 variable timerValue
 3 : doAdds (--)
 4 165 0 do
 5 1000 0 do
 6 5 7 + aVar !
 7 loop
 8 loop ;
 9 : run (--)
10 bell (Signal user to start the stopwatch)
11 doAdds
12 bell (Signal user to stop the stopwatch)
13 ." Done " ;

 Run Seconds

 1 34.78
 2 34.67
 3 34.67
 4 34.55
 5 34.57
 6 34.64
 7 34.64
 8 34.63
 9 34.60
 10 34.45

Mean 34.620
 s 0.087100

 Say 34.62 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 71 of 85

The Add Loops Recap:

Assembly Language 5.45 seconds
eForth 34.62 seconds
Talbot ColorForth 1.1 47.52 seconds
Armadillo ColorForth 2.0 42.66 seconds
CF83 Forth 62.61 seconds
pd10 SuperForth 69.62 seconds
Basic 1088.46 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 72 of 85

Appendix G -- Print Loops Benchmarks

Our Print Loops Benchmark simply prints the message “PRINTING LOOPS BENCHMARK”
2,000 times. The number 2,000 was chosen because, in CF83 Forth, the timer values obtained
approached the timer limit of 65535. Thus the timer would not roll over during the CF83 Forth
runs and, simultaneously, the other runs would enjoy the greatest possible precision of results
within the limit imposed by the CF83 Forth runs.

The Basic Program:

100 '**********
110 '* PRTLOOPS.BAS
120 '* PRINTING LOOPS BENCHMARK
130 '* MDJ 2019/01/31
140 '**********
150 'ZERO THE COCO TIMER
160 POKE 274,0
170 POKE 275,0
180 'DO THE LOOPS
190 FOR I=1 TO 63
200 FOR J=1 TO 1000
210 PRINT "PRINTING LOOPS BENCHMARK ";
220 NEXT J
230 NEXT I
240 'GET THE COCO TIMER VALUE
250 T1=PEEK(274)
260 T2=PEEK(275)
270 T=(T1*256)+T2
280 'REPORT THE RESULTS
290 PRINT"TIMER = ";T
300 END

Benchmarking CF83 Forth -- 2019/04/26 -- Page 73 of 85

 Run Timer

 1 2062
 2 2064
 3 2062
 4 2055
 5 2066
 6 2064
 7 2058
 8 2062
 9 2058
 10 2067

Mean 2061.8
 s 3.7947

 = 34.66 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 74 of 85

The Assembly Language Program without the assembly:

00100 **********
00110 * PRTLOOP.ASM
00120 * PRINTING LOOPS BENCHMARK
00130 * MDJ 2019/01/31
00140 **********
00150 ORG $3200
00160 PSHS A,B,X,Y
00170 JMP GP
00180 MSG FCC 'PRINTING LOOPS BENCHMARK '
00190 FCB $00
00200 GP LDX #1 OUTER LOOP COUNTER
00210 GP1 CMPX #64
00220 BEQ GP6 EXIT IF OUTER LOOP COMPLETE
00230 LDY #1 INNER LOOP COUNTER
00240 GP2 CMPY #1001
00250 BEQ GP5 GO IF INNER LOOP COMPLETE
00260 PSHS X
00270 LDX #MSG START OF THE MESSAGE
00280 GP3 LDA ,X+ LOAD CHARACTER
00290 BEQ GP4 GO IF ZERO (==> END)
00300 JSR $A30A PUT CHARACTER TO SCREEN
00310 BRA GP3
00320 GP4 PULS X
00330 LEAY 1,Y INCREMENT INNER LOOP COUNTER
00340 BRA GP2
00350 GP5 LEAX 1,X INCREMENT OUTER LOOP COUNTER
00360 BRA GP1
00370 GP6 PULS A,B,X,Y
00380 RTS
00390 END

100 '**********
110 '* PRTLOOP.BAS
120 '* BASIC SUPERVISOR FOR
130 '* PRTLOOP.ASM
140 '* PRINTING LOOPS BENCHMARK
150 '* MDJ 2019/01/31
160 '**********
170 CLEAR 1024, &H31FF
180 LOADM "PRTLOOP.BIN"
190 'ZERO THE COCO TIMER
200 POKE 274, 0
210 POKE 275, 0
220 'PERFORM THE PRINTING LOOPS
230 EXEC &H3200

Benchmarking CF83 Forth -- 2019/04/26 -- Page 75 of 85

240 'GET THE COCO TIMER VALUE
250 T1 = PEEK(274)
260 T2 = PEEK(275)
270 T = (T1 * 256) + T2
280 'REPORT THE RESULTS
290 PRINT "TIMER = ";
300 PRINT T
310 END

Benchmarking CF83 Forth -- 2019/04/26 -- Page 76 of 85

The Assembly Language Program without the assembly:

 00100 **********
 00110 * PRTLOOP.ASM
 00120 * PRINTING LOOPS BENCHMARK
 00130 * MDJ 2019/01/31
 00140 **********
3200 00150 ORG $3200
3200 34 36 00160 PSHS A,B,X,Y
3202 7E 321F 00170 JMP GP
3205 50 00180 MSG FCC 52
 49
 4E
 54
 49
 4E
 47
 20
 4C
 4F
 4F
 50
 53
 20
 42
 45
 4E
 43
 48
 4D
 41
 52
 4B
 20
321E 00 00190 FCB $00
321F 8E 0001 00200 GP LDX #1
3222 8C 0040 00210 GP1 CMPX #64
3225 27 22 00220 BEQ GP6
3227 108E 0001 00230 LDY #1
322B 108C 03E9 00240 GP2 CMPY #1001
322F 27 14 00250 BEQ GP5
3231 34 10 00260 PSHS X
3233 8E 3205 00270 LDX #MSG
3236 A6 80 00280 GP3 LDA ,X+
3238 27 05 00290 BEQ GP4
323A BD A30A 00300 JSR $A30A
323D 20 F7 00310 BRA GP3

Benchmarking CF83 Forth -- 2019/04/26 -- Page 77 of 85

323F 35 10 00320 GP4 PULS X
3241 31 21 00330 LEAY 1,Y
3243 20 E6 00340 BRA GP2
3245 30 01 00350 GP5 LEAX 1,X
3247 20 D9 00360 BRA GP1
3249 35 36 00370 GP6 PULS A,B,X,Y
324B 39 00380 RTS
 0000 00390 END

00000 TOTAL ERRORS

GP 321F
GP1 3222
GP2 322B
GP3 3236
GP4 323F
GP5 3245
GP6 3249
MSG 3205

 Run Timer

 1 968
 2 971
 3 970
 4 971
 5 970
 6 971
 7 970
 8 970
 9 970
 10 970

Mean 970.1
 s 0.8756

 = 16.31 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 78 of 85

The CF83 Forth Program:

BLOCK NUMBER 4

(CF83 Printing Loops Benchmark - 1/1)
variable timerValue
: doPrints (--)
 2 0 do
 1000 0 do
 ." PRINTING LOOPS BENCHMARK "
 loop
 loop ;
: run (--)
 0 274 ! (Zero the CoCo Timer)
 doPrints
 274 @ timerValue ! (Get the CoCo Timer Value)
 ." Timer = " timerValue @ u. ;

 Run Timer

 1 59712
 2 59702
 3 59928
 4 59928
 5 59928
 6 59928
 7 59927
 8 59928
 9 59928
 10 59928

Mean 59883.7
 s 93.1594

 = 1006.55 seconds

 = 16 minutes 46.55 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 79 of 85

The Armadillo ColorForth 2.0 Program:

BLOCK NUMBER 6

(ARMADILLO PRINTING LOOPS BENCHMARK - 1/1)
: U. 0 <# #S #> TYPE SPACE ;
0 VARIABLE TIMERVALUE
: DOPRINTS (--)
 2 0 DO
 1000 0 DO
 ." PRINTING LOOPS BENCHMARK "
 LOOP
 LOOP ;
: RUN (--)
 0 274 ! (ZERO THE COCO TIMER)
 DOPRINTS
 274 @ TIMERVALUE ! (GET THE COCO TIMER VALUE)
 ." TIMER = " TIMERVALUE @ U. ;

 Run Timer

 1 2548
 2 2552
 3 2551
 4 2551
 5 2552
 6 2551
 7 2552
 8 2552
 9 2551
 10 2552

Mean 2551.2
 s 1.2293

 = 42.88 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 80 of 85

The pd10 SuperForth Program:

(PRTLOOP1.DAT)
(PD-10 SUPERFORTH - 1/1)
(PRINTING LOOPS BENCHMARK)
(MDJ 2019-03-24)

(NOTE: FIG REQUIRES NUMBER BEFORE VARIABLE)

(NOTE: N1 N2 DO LOOP RUNS UP THROUGH N1)
(INSTEAD OF JUST UP TO IT.)

0 VARIABLE TIMERVALUE

: DOINNER 999 0 DO ." PRINTING LOOPS BENCHMARK " LOOP ;
: DOPRTS 1 0 DO DOINNER LOOP ;

: RPT ." TIMER = " TIMERVALUE @ U. ;
: RUN 0 274 ! DOPRTS 274 @ TIMERVALUE ! RPT ;

 Run Timer

 1 1500
 2 1500
 3 1500
 4 1500
 5 1500
 6 1500
 7 1500
 8 1500
 9 1500
 10 1500

Mean 1500
 s 0

 = 25.21 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 81 of 85

The Talbot ColorForth Program:

This listing has been modified to eliminate trailing blank lines.

 SCR 1
 0 (PRTLP.BIN)
 1 (TALBOT COLORFORTH 1.1)
 2 (PRINTING LOOP BENCHMARK)
 3 (MDJ 2019-02-01)
 4 : U. 0 <# #S #> TYPE SPACE ;
 5
 6 0 VARIABLE TIMERVALUE
 7 : DOPRINTS (--)
 8 2 0 DO
 9 1000 0 DO
 10 ." PRINTING LOOPS BENCHMARK "
 11 LOOP
 12 LOOP ;
 13 : RUN (--)
 14 (ZERO THE COCO TIMER)
 15 0 274 !
 16 DOPRINTS
 17 (GET COCO TIMER VALUE)
 18 274 @ TIMERVALUE !
 19 ." TIMER = "
 20 TIMERVALUE @ U. ;

 Run Timer

 1 3582
 2 3582
 3 3583
 4 3583
 5 3583
 6 3583
 7 3583
 8 3583
 9 3583
 10 3583

Mean 3582.8
 s 0.42164

 = 60.22 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 82 of 85

The eForth Program:

This eForth printout was manually massaged a bit -
but just to omit erroneous 23jan84 date and the
blank lines at the end of the block.

Block # 6
 0 (eForth Printing Loops Benchmark - 1/1)
 1 : doPrints (--)
 2 2 0 do
 3 1000 0 do
 4 ." PRINTING LOOPS BENCHMARK "
 5 loop
 6 loop ;
 7 : run (--)
 8 bell (Signal user to start the stopwatch)
 9 doPrints
10 bell (Signal user to stop the stopwatch)
11 ." Done " ;

 Run Min:Sec

 1 2:48.49
 2 2:48.27
 3 2:48.30
 4 2:48.17
 5 2:48.19
 6 2:48.18
 7 2:48.20
 8 2:48.14
 9 2:48.25
 10 2:48.15

Mean 2:48.234
 s 0.10405

 Say 168.23 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 83 of 85

The Print Loops Recap:

Assembly Language 16.31 seconds
pd10 SuperForth 25.21 seconds
Basic 34.66 seconds
Armadillo ColorForth 2.0 42.88 seconds
Talbot ColorForth 1.1 60.22 seconds
eForth 168.23 seconds
CF83 Forth 1006.55 seconds

Benchmarking CF83 Forth -- 2019/04/26 -- Page 84 of 85

Appendix H -- New BDS Software License

This New Software License applies to all software found on the BDS Software site, and
supersedes all previous copyright notices and licensing provisions which may appear in the
software itself or in any documentation therefor.

All software which has previously been placed in the public domain remains in the public
domain.

All other software, programs, experiments and reports, documentation, and any other material on
this site (other than that attributed to outside sources) is hereby copyright © 2018 (or later if so
marked) by M. David Johnson.

All software, documentation, and other information on the BDS Software site is available for you
to freely download without cost.

Whether you downloaded such items directly from this site, or you obtained them by any other
means, you are hereby licensed to copy them, to sell or give away such copies, to use them, and
to excerpt from them, in any way whatsoever, so long as nothing you do with them would
denigrate the name of our Lord and Savior, Jesus Christ.

I make absolutely no warranty whatsoever for any of these items. You use them entirely at your
own risk.

If they don't work for you, I commiserate.

If they crash your system, I sympathize.

But I accept no responsibility whatsoever for any such consequences. Under no circumstances
will BDS Software or M. David Johnson be liable for any negative results of any kind which you
may experience from downloading or using these items.

BDS Software's former mail address at P.O. Box 485 in Glenview, IL is no longer valid. Any
mail sent to that address will be rejected by the U.S. Postal Service. See my Contact page.

M.D.J. 2018/06/08

http://www.bds-soft.com/Contact.html

Benchmarking CF83 Forth -- 2019/04/26 -- Page 85 of 85

Appendix I -- References

(Calculator.net). https://www.calculator.net/standard-deviation-calculator.html

Caldwell, C. (Accessed 2019/01/23). “The First 10,000 Primes”,
https://primes.utm.edu/lists/small/10000.txt

Calmatory (Accessed 2019/04/06). “Optimizing code: Brute force prime number generator”,
http://www.xtremesystems.org/forums/showthread.php?256948-Optimizing-code-Brute-force-
prime-number-generator

(CoCo Archive). TRS-80 COLOR COMPUTER ARCHIVE,
http://www.colorcomputerarchive.com/

(CoCo Manual) Tandy (1986). Color Computer 3 Extended Basic. Fort Worth.

Eaker, C.E. (1983) A “Tour De FORTH” with eFORTH. Syracuse NY: Frank Hogg Laboratory.

Haydon, G. B. (1990). All About Forth: An Annotated Glossary, 3rd Ed. La Honda CA: Glen B.
Haydon

Pereira, S. M. (2015). Color Forth Memory Map - as modified for operation with DECB by smp.
Online personal publication.

Pereira, S. M. (2015). Color Forth User Notes - as modified for operation with DECB by smp.
Online personal publication.

RosettaCode.org (Accessed 2019/01/23). “Sieve of Eratosthenes”,
https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Forth

Unknown Author (Unknown Date). PD-10 SUPERFORTH MANUAL. Unknown online
publisher.

Warren, C. D. (1980). The MC6809 Cookbook. Blue Ridge Summit PA: Tab Books.

Zimmer, T. J. and Talbot, R. J. Jr. (1981). COLORFORTH v 1.0 for RADIO SHACK COLOR
COMPUTER. Redondo Beach CA: Talbot Microsystems.

Zydhek, W. K. (Revised 1999). Extended Basic Unravelled II. Origin: Spectral Associates

https://www.calculator.net/standard-deviation-calculator.html
https://primes.utm.edu/lists/small/10000.txt
http://www.xtremesystems.org/forums/showthread.php?256948-Optimizing-code-Brute-force-prime-number-generator
http://www.xtremesystems.org/forums/showthread.php?256948-Optimizing-code-Brute-force-prime-number-generator
http://www.colorcomputerarchive.com/
https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Forth

